

Order Number: AN1856/D
Rev. 0, 5/2000

Semiconductor Products Sector

Application Note
Migrating from the ColdFire¨ MCF5307 to the
MCF5407
This application note highlights the differences between the MCF5307B and MCF5407. Users of the
MCF5307 and MCF5307A should use this document in conjunction with the MCF5307 User's Manual
Mask Set Addendum. For additional information, see the MCF5407 Integrated ColdFire Microprocessor
Product Brief.

This document consists of the following sections:

Topic Page

Section 1.1, ÒOverviewÓ 2

Section 1.2, ÒInstruction Set AdditionsÓ 3

Section 1.3, ÒEnhanced MemoriesÓ 4

Section 1.4, ÒOn-Chip DMA ModiÞcationsÓ 4

Section 1.5, ÒUART EnhancementsÓ 6

Section 1.6, ÒTiming DifferencesÓ 7

Section 1.7, ÒReset Initialization ModiÞcationsÓ 9

Section 1.8, ÒRevision C DebugÓ 11

Section 1.9, ÒVoltage Input ChangesÓ 20

Section 1.10, ÒPLL Power Supply Filter CircuitÓ 20

Section 1.11, ÒPin-Assignment CompatibilityÓ 21

Section 1.12, ÒMechanical DataÓ 21

Section 1.13, ÒColdFire Instruction Set Architecture EnhancementsÓ 29
This document contains information on a new product under development by Motorola.
Motorola reserves the right to change or discontinue this product without notice.

© Motorola, Inc., 2000. All rights reserved.

Overview

1.1 Overview
The MCF5407 offers an easy upgrade and more than triples the performance of the MCF5307. The
MCF5407 is the Þrst standard product of the ColdFire family to contain the Version 4 (V4) ColdFire
microprocessor core. To create this next-generation, high-performance core, many advanced design features
are implemented. Most notable are a Harvard memory architecture, branch cache acceleration logic, and
limited superscalar dual-instruction issue support, which results in 257 MIPS at 162 MHz (Dhrystone 2.1).

Customers using the integrated peripherals of the MCF5307 can access the same features on the MCF5407
with the added advantage of increased cache and RAM memories as well as an enhanced instruction set
architecture (ISA), DMA, synchronous UART, and debug functionality. Decreased voltage requirements
allow designers to take advantage of other low-voltage components on the board for an integrated,
low-power system.

To migrate designs from the MCF5307 to the MCF5407, note the minor differences between these
code-compatible processors in the initialization code, power supplies, and clock inputs. This document
describes the differences between the processors and outlines the steps to upgrade the design. Table 1 is a
quick reference chart of these differences.

Table 1. Differences between MCF5307 and MCF5407

Feature MCF5307 MCF5407 Reference

Version core ColdFire version 3 (V3) ColdFire version 4 —

MIPS 70 MIPS at 90-MHz core
clock

257 MIPS at 162-MHz core clock —

Instruction set Baseline ColdFire ISA RevA
is used in version 2 and
version 3 core.

ColdFire ISA RevB which includes certain
instruction enhancements and some instruction
additions; V2/V3 ISA Rev A is
upward-compatible with ISA Rev B.

Section 1.2,
“Instruction Set
Additions”

Caches 8-Kbyte unified cache 16-Kbyte instruction cache

8-Kbyte data cache

Section 1.3,
“Enhanced
Memories”

Two cache access control
registers (ACR0/ACR1)

ACR0/ACR1 configure data space;
ACR2/ACR3 configure instruction space

4-Kbyte SRAM Two independently configurable 2-Kbyte
SRAMs

No cache locking Ability to lock all or half of the instruction cache
to prevent instructions from being cast out. This
is useful for deterministic code.

DMA
modifications

DMA acknowledge assertion
is encoded on TM[2:0].

DACK[1:0] multiplexed on TM[1:0] can be
programmed as separate DMA acknowledge
signals.

DMA TM[2:0] encodings are different from
MCF5307 DMA TM[2:0] encodings.

Section 1.4,
“On-Chip DMA
Modifications”

DMA byte count register
(BCR) can be programmed
to be 16 or 24 bits.

BCR is 24 bits only.

UART Both UARTs have identical
functionality. No support for
synchronous mode.

UART0 is identical to the MCF5307 UARTs;
UART1 has been enhanced to provide
synchronous operation and a CODEC interface
for soft modem support.

Section 1.5, “UART
Enhancements”
2 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Instruction Set Additions

1.2 Instruction Set Additions
The MCF5407 implements Revision B (Rev B) of the ColdFire instruction set, which adds instructions and
enhances existing ISA Revision A (Rev A) opcodes to support byte- and word-sized operands and
position-independent code. Existing MCF5307 code is completely upward compatible with the MCF5407.
However, designers may incorporate the instruction set additions and enhancements, especially when
upgrading 68K code that references 8- and 16-bit short operands.

The following list summarizes new and enhanced instructions of Rev B ISA:

¥ New instructions:

Ñ INTOUCH loads instructions one cache block at a time for use with cache locking.

Ñ MOV3Q.L moves 3-bit immediate data to the destination location.

Ñ MVS.{B,W} moves the sign-extended source operand to the destination register.

Ñ MVZ.{B,W} zero-Þlls the source operand and moves it to the destination register.

Ñ SATS.L updates bit 31 of the destination register depending on the CCR overßow bit.

Ñ TAS.B tests and sets byte operand being addressed.

¥ Enhancements to existing Revision A instructions:

Ñ Longword support for branch instructions (Bcc, BRA, BSR)

Ñ Byte and word support for compare instructions (CMP, CMPI)

Ñ Byte and longword support for MOVE where the source is of type #<data> and the destination
is of type d16(Ax); that is, move.b #<data>, d16(Ax)

Refer to Section 1.13, ÒColdFire Instruction Set Architecture Enhancements,Ó for details of these additions
and enhancements.

Timing
relationships

All signal timing with respect
to BCLKO; CLKIN rise time =
5 nS.

All signal timings with respect to CLKIN
(BCLKO support provides compatibility with
MCF5307 designs.)

Tighter negative edge bus specifications due to
duty cycle; CLKIN rise time = 2 nS.

Section 1.6.1,
“Phase-Locked
Loop (PLL),” and
Section 1.6, “Timing
Differences”

Reset
initialization

Need to drive D[7:0]/
AA, PS[1:0],
ADDR_CONFIG,
FREQ[1:0], DIVIDE[1:0]

Need to drive D[7:0]/AA, PS[1:0],
ADDR_CONFIG, BE_CONFIG, DIVIDE[2:0]

Section 1.7, “Reset
Initialization
Modifications”

Debug
module

Debug Revision B. Separate
PST[3:0] and DDATA[3:0]

Debug Revision C—Adds breakpoint registers,
normal interrupt request service during debug,
and combines debug signals into
PSTDDATA[7:0]

Section 1.8,
“Revision C Debug”

Voltage input
changes

Drives minimum 2.4 V;
accepts 5-V input

Drives minimum 2.4 V; accepts 3.3-V input Section 1.9,
“Voltage Input
Changes”

Requires 3.3-V operating
voltage

Requires 1.8-V and 3.3-V operating voltages

Pin
assignment

Standard MCF5307 pinout Compatible with MCF5307 pinout except for
power-pad input assignment

Section 1.11,
“Pin-Assignment
Compatibility”

Table 1. Differences between MCF5307 and MCF5407 (Continued)

Feature MCF5307 MCF5407 Reference
Migrating from the ColdFire¨ MCF5307 to the MCF5407 3

Enhanced Memories

1.3 Enhanced Memories
With the introduction of a Harvard memory architecture in the version 4 core design, the MCF5407 has
separate instruction and data caches. The 16-Kbyte instruction cache and 8-Kbyte data cache greatly
improve performance on existing systems. On-chip RAMs are also provided to work with the caches.

The MCF5307 conÞguration contains an 8-Kbyte uniÞed cache with a 4-Kbyte SRAM. ConÞguration
registers for these memories include one cache control register (CACR), two access control registers (ACR0
and ACR1), and one RAM base address register (RAMBAR). With the enhanced memory sizes of the
MCF5407, more conÞguration registers have been provided. The new MOVEC register map for the
MCF5407 memory conÞguration registers is given in Table 2.

Note that the existing functionality has not changed; new registers and new bits in existing registers have
been added to support the enhanced memories and control for the new branch cache. One of the two 2-Kbyte
SRAMs can be dedicated to support the instruction cache, and the other can support the data cache. Many
designs use one SRAM block as a system stack and the other to hold important interrupt service routines.

The SRAM can also function as a ROM by programming it as a data block while loading conÞguration
information to it and then reprogramming it as a read-only instruction block. The two MCF5407 SRAM
blocks can be programmed to provide a contiguous 4-Kbyte memory map similar to the MCF5307Õs single
contiguous 4-Kbyte SRAM.

1.4 On-Chip DMA ModiÞcations
The MCF5407 integrates the four-channel DMA used in the MCF5307 with changes to pin multiplexing,
DMA byte transfer count, and the encoding of transfer acknowledgement. The MCF5307 provides DMA
acknowledgement encodings for channels 0 and 1 through the transfer modiÞer pins, TM[2:1], which are
multiplexed with PP[4:3]. For clariÞcation on MCF5307 signal multiplexing, see the pinout tables in the
mechanical speciÞcations chapter of the MCF5307 UserÕs Manual. The MCF5307 also indicates a DMA
single address access through transfer modiÞer pin TM0, multiplexed with PP2.

When the pin assignment register (PAR) is programmed to enable the TM signals, the encodings listed in
Table 3 and Table 4 are driven during transfers by the internal DMA channels of the MCF5307. The
condition TT[1:0] = 01 indicates an access by either an internal DMA or an external device.

Table 2. MOVEC CPU Space Register Map

Rc[1:0] Register DeÞnition

0x002 Cache control register (CACR)

0x004 Cache access control register 0 (ACR0; data cache)

0x005 Cache access control register 1 (ACR1; data cache)

0x006 Cache access control register 2 (ACR2; instruction cache)

0x007 Cache access control register 3 (ACR3; instruction cache)

0xC04 RAM base address register 0 (RAMBAR0) 1

1 Either or both of the RAMBAR registers can be configured for instructions or data through
an additional bit, RAMBARn[D/I].

0xC05 RAM base address register 1 (RAMBAR1) 1
4 Migrating from the ColdFire¨ MCF5307 to the MCF5407

On-Chip DMA ModiÞcations

Although the MCF5407 provides similar encodings on TM[2:0], dedicated DMA acknowledgement pins
(DACK[1:0]) have been added. Thus, DACK[1:0] are now combined with PP[3:2]/TM[1:0], resulting in a
three-to-one multiplexed signal, PP[3:2]/TM[1:0]/DACK[1:0]. TM2 is still multiplexed only with PP4. For
further clariÞcation on the multiplexing, see the pinout tables in Section 1.11, ÒPin-Assignment
Compatibility.Ó When properly connected, TM[2:0] can be used in MCF5407 designs as on MCF5307
designs or DACK[1:0] can be used for DMA transfers, as shown in Figure 1.

To enable DACK[1:0], Þrst enable the transfer modiÞer signals (TM[1:0]) in the PAR and then program the
interrupt assignment register (IRQPAR) in the MCF5407 SIM module to enable bits 0Ð1. Figure 2 deÞnes
the IRQPAR bits.

When IRQPAR[ENBDACK1] = 1 and the PAR register is also programmed to enable TM1, the DACK1
signal for DMA channel 1 is driven in place of TM1 for DMA transfers. ENBDACK1 = 0 disables this
function, and only the TM1 encoding is driven. The same is true for IRQPAR[ENBDACK0].
ENBDACK0 = 1 enables DACK0 to be driven, while ENBDACK0 = 0 disables this function and drives the
TM0 encoding.

Table 3. TM[2:1] Encoding for MCF5307 Internal DMA as Master (TT = 01)

TM[2:1] Transfer ModiÞer Encoding

00 DMA acknowledges negated

01 DMA acknowledge, channel 0

10 DMA acknowledge, channel 1

11 Reserved

Table 4. TM0 Encoding for MCF5307 Internal DMA as Master (TT = 01)

TM0 Transfer ModiÞer Encoding

0 Dual address access

1 Single address access

MCF5307 Function Pin Pin MCF5407 Function

Single/dual cycle access TM0 TM0 DMA 0 acknowledge

DMA 0 acknowledge configuration TM1 TM1 DMA 1 acknowledge

DMA 1 acknowledge configuration TM2 TM2 Single/dual cycle access

Figure 1. MCF5307 to MCF5407 TM[2:0] Pin Remapping

7 6 5 4 3 2 1 0

Field IRQPAR2 IRQPAR1 IRQPAR0 Reserved ENBDACK1 ENBDACK0

Reset 0000_0000

R/W

Address Address MBAR + 0x06

Figure 2. MCF5407 IRQPAR
Migrating from the ColdFire¨ MCF5307 to the MCF5407 5

UART Enhancements

Although TM[2:0] can still drive DMA access encoding, the bit positions of these encodings are different
from the MCF5307. The MCF5407 encodes single-address accesses on TM2 when the PAR is set to enable
the transfer modiÞer signal and an external master or DMA transfer is occurring. This encoding is driven by
TM0 on the MCF5307.

In addition, on the MCF5407, DMA transfer acknowledgement encodings are driven on TM[1:0] (the
MCF5307 uses TM[2:1]). Table 5 and Table 6 show the MCF5407 encoding for TM[2:0] when the PAR is
set to enable these signals, and the IRQPAR is programmed to disable the DMA acknowledge pins
DACK[1:0]. Note that when DACK[1:0] are driven, TM2 is still driven if enabled through the PAR.

Table 7 summarizes MCF5407 pin conÞgurations based on PAR and IRQPAR programming combinations.

Designers who use MCF5307 DMA channels should also note that the MCF5407 DMA byte count registers
(BCRs) for channels 0Ð3 exclusively support a 24-bit byte count. A 16-bit byte count register is no longer
supported; therefore, MPARK[BCR24BIT] has been removed.

1.5 UART Enhancements
The MCF5407 contains two UARTs that act independently. One of the UARTs on the MCF5407 has been
enhanced to provide synchronous operation and a CODEC interface for soft modem support. Each UART
can be clocked by the system bus clock, eliminating the need for an external crystal.

Table 5. TM2 Encoding for MCF5407 Internal DMA as Master (TT = 01)

TM2 Transfer ModiÞer Encoding

0 Single address access negated

1 Single address access

Table 6. TM[1:0] Encoding for MCF5407 Internal DMA as Master (TT = 01)

TM[1:0] Transfer ModiÞer Encoding

00 DMA acknowledges negated

01 DMA acknowledge, channel 0

10 DMA acknowledge, channel 1

11 Reserved

Table 7. MCF5407 Signal Configurations for PP[4:2]/TM[2:0]/DACK[1:0]

PAR ConÞguration1

1 Note that to enable DACK[1:0], the PAR must first be programmed to enable TM[1:0].

IRQPAR ConÞguration PP[4:2] TM[2:0] DACK[1:0]

TM[2:0] disabled,
PP[4:2] enabled

ENBDACK[1–0] = 0 or 1 Driven Not driven Not driven

TM[2:0] enabled ENBDACK[1–0] = 0 Not driven TM[2:0] driven Not driven

TM[2:0] enabled ENBDACK[1–0] = 1 Not driven TM2 driven only Driven
6 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Timing Differences

The UART module interfaces directly to the CPU as shown in Figure 3. The UART module consists of the
following major functional areas:

¥ Serial communication channel

¥ 16-bit timer for baud-rate generation

¥ Internal channel control logic

¥ Interrupt control logic

Figure 3. Simplified Block Diagram

In addition, UART1 has been enhanced to provide a CODEC interface for soft modem support. UART1 can
be programmed to provide any one of the following functions:

¥ The original UART (identical to UART0)

¥ Three modem modes:

Ñ An 8-bit CODEC interface

Ñ A 16-bit CODEC interface

Ñ An audio CODEC 97 (AC97) digital interface controller

1.6 Timing Differences
This section explains timing relationships within phase-locked loop registers.

1.6.1 Phase-Locked Loop (PLL)
The PLL for the MCF5407 is enhanced to support faster processor clock (PCLK) frequencies. The
MCF5307 supports PCLK frequencies of 66.7 and 90 MHz with a clock input (CLKIN) of 1/2 PCLK. The
MCF5407 offers a larger range of clock input ratios and a higher performance processor clock.

The MCF5407 PLL module is shown in Figure 4.

Serial Communications
Channel

Interrupt Control
Logic

CTS

RTS

RxD

TxD

System bus clock
or
External clock (TIN)

Internal Channel
Control Logic

16-Bit Timer for
Baud-Rate Generation
Migrating from the ColdFire¨ MCF5307 to the MCF5407 7

Timing Differences

Figure 4. PLL Module

Similar to the MCF5307 functionality, the MCF5407 samples clock ratio encodings on the lower data bits
of the bus at reset to determine the CLKIN-to-PCLK ratio at which the device runs. These bits are
DIVIDE[1:0] on the MCF5307 and are multiplexed with data bits D[1:0]. Because the MCF5407 offers
more divide ratio combinations than the MCF5307, three input bits, D[2:0]/DIVIDE[2:0], have been
provided to offer more programming options at reset. Also, note that only speciÞc CLKIN ranges are
allowed for each divide ratio on the MCF5407.

Table 8 shows the new encodings. Note that they differ from the MCF5307 DIVIDE[1:0] encodings.

Figure 5 correlates the CLKIN and PCLK frequencies for the 3xÐ6x multipliers.

Figure 5. CLKIN-to-PCLK Frequency Ranges

Table 8. Divide Ratio Encodings

D[2:0]/DIVIDE[2:0] Input Clock (MHz) Multiplier Core Clock (MHz) PSTCLK (MHz)

00x–010 Reserved

011 40.0–54.0 3 120.0–162 60.0–81.0

100 25.0–40.5 4 100.0–162 50.0–81.0

101 25.0–32.4 5 125.0–162 67.5–81.0

110 25.0–27.0 6 150.0–162 75.0–81.0

111 Reserved

PLL

CLKIN

RSTI
PSTCLK

Debug Module
DIVIDE[2:0]

RSTO

PCLK (to core)

BCLKO

CLKIN (to on-chip peripherals)

÷2

(= PCLK/2)

25 30 35 40 45 55

25 27

25 32.4

50 100 110 120 130 140 160

150

125 162

150 170

6x

5x

162

CLKIN (MHz) PCLK (MHz)

CLKIN PCLK

40 54 120 162
3x

25 40.5 100 162
4x
8 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Reset Initialization ModiÞcations

1.6.2 Timing Relationships
For both the MCF5307 and MCF5407, the user provides the clock input signal (CLKIN), which is also used
for on-chip peripherals, as shown in Figure 4. This signal is also the reference from which other clock
frequencies are derived, including the bus clock output signal (BCLKO), which on the MCF5407 is
provided for compatibility with MCF5307 designs. BCLKO is generated by the PLL and MCF5307 designs
should use BCLKO as the bus timing reference for external devices; MCF5407 designs should use CLKIN.
On the MCF5407, the CLKIN frequency can be 1/3, 1/4, 1/5, or 1/6 of the PCLK. Furthermore, depending
on the MCF5307 conÞguration, the BCLKO-to-PCLK ratio may not be the same as the CLKIN-to-PCLK
ratio.

On the MCF5407, the user-provided CLKIN should be used as the bus clock for the system. BCLKO runs
at the same frequency as CLKIN and is offered as an optional timing reference for backwards compatibility
for lower-speed MCF5307 designs.

Regardless of the CLKIN frequency driven at power-up, CLKIN and BCLKO have the same ratio value to
PCLK. Although designers can use either BCLKO or CLKIN as a clock reference, Motorola recommends
using CLKIN because it leaves more room to meet bus speciÞcations than BCLKO, which is generated as
a phase-aligned signal to CLKIN. An MCF5307 user should consider switching to a CLKIN reference clock
when upgrading to the MCF5407 if board frequencies exceed 50 MHz.

Although the CLKIN duty cycle remains the same for the MCF5307 and MCF5407, use caution when
interfacing signals on the falling edge of CLKIN with only a 4-nS window at high frequencies. Also, note
that the MCF5407 input rise time is reduced to 2 nS (5 nS in the MCF5307). For designers who choose to
reference signals from CLKIN only, BCLKO can be disabled to save power by setting a disable bus clock
output signal (DISBCLKO) in the PLL control register (PLLCR) as shown in Figure 6.

Figure 6. PLL Control Register (PLLCR)

1.7 Reset Initialization ModiÞcations
Like the MCF5307, the MCF5407 samples a group of eight input signals, D[7:0], on the rising edge of RSTI
to determine the reset conÞguration of the global chip select, the address bus, and PLL. However, unlike the
MCF5307, the frequency range encodings are not sampled on D[3:2], which are replaced by two other reset
conÞguration inputs. First, the CLKIN-to-PCLK ratio allows more combinations. This extra bit is now
sampled on D2 so that the clock ratio programming bits encompass D[2:0]/DIVIDE[2:0].

Second, a new reset conÞguration bit, BE_CONFIG0, is now multiplexed with D3 in the MCF5407. This
bit enables the four byte enables for the global chip select, CS0, for reads and writes or writes only,
depending on the bit value sampled at reset, as shown in Table 13.

Table 9 shows the multiplexing of D[7:0] for the MCF5307 and the MCF5407.

7 6 5 4 3 2 1 0

Field ENBSTOP PLLIPL2 PLLIPL1 PLLIPL0 DISBCLKO —

Reset 0000_0000

R/W R/W

Address Address MBAR + 0x08
Migrating from the ColdFire¨ MCF5307 to the MCF5407 9

Reset Initialization ModiÞcations

Table 10 through Table 13 list the various reset encodings for the conÞguration signals multiplexed with
D[7:3]. See for D[2:0]/DIVIDE[2:0] encodings sampled at reset. Note that Table 10 and Table 11 conÞgure
the global, or boot, CS0 that is used to access boot ROM out of reset. CS0 is the only chip select active out
of reset until other chip selects become valid. Both the wait states and port size of boot memory accessed
by boot CS0 are programmed through these bits.

Table 11 shows conÞgurations for D[6:5]/PS[1:0].

Table 12 initializes the pin assignment register of the parallel I/O port to be either parallel I/O or to be the
upper address bus bits along with various attribute and control signals at reset to give the user the option to
access a broader addressing range of memory, if desired.

Table 13 shows conÞgurations for D3/BE_CONFIG0. Because some boot memories require byte enables to
be active only during writes, the functionality of byte enables, BE[3:0], can be programmed at reset.

Table 9. D[7:0] Multiplexing

Data Pins MCF5307 MCF5407

D7 AA

D[6:5] PS[1:0]

D4 ADDR_CONFIG0

D3 FREQ1 BE_CONFIG0, BE[3:0]

D2 FREQ0 DIVIDE2

D1 DIVIDE1

D0 DIVIDE0

Table 10. D7/AA, Automatic Acknowledge of Boot CS0

D7/AA Boot CS0 AA ConÞguration at Reset

0 Disabled

1 Enabled with 15 wait states

Table 11. D[6:5]/PS[1:0], Port Size of Boot CS0

D[6:5]/PS[1:0] Boot CS0 Port Size at Reset

00 32-bit port

01 8-bit port

10 16-bit port

11 16-bit port

Table 12. D4/ADDR_CONFIG0, Address Pin Assignment

D4/ADDR_CONFIG0 ConÞguration Pin Assignment Register at Reset

0 PP[15:0], defaulted to inputs upon reset

1 ADDR[31:24]/TIP/DREQ[1:0]/TM[2:1]
10 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Revision C Debug

D[2:0]/DIVIDE[2:0] conÞgurations are shown in Table 8.

After RSTI is negated, 32 bits of CPU conÞguration information is loaded into data register D0 and 32 bits
of internal memory information is loaded in D1. Because these registers are completely uninitialized on
previous ColdFire devices, this feature allows users to identify the MCF5407 through software. Values D1
= 0x0630_0530 and D0 = 0xCF4x_C012 identify the MCF5407, where x identiÞes the core revision number
(0x1 for the initial device).

1.8 Revision C Debug
A number of enhancements to the original ColdFire debug functions were requested by customers and
third-party tool developers. As a result, an expanded set of debug functions was implemented in the
version 4 ColdFire and named Revision C, or simply Debug C. Most of the enhancements are included in
the MCF5407 debug module and are primarily related to improvements in the real-time debug capabilities.

1.8.1 Debug Interrupts and Interrupt Requests
in Emulator Mode

In the Debug B ColdFire implementation of the MCF5307, the response to a user-deÞned breakpoint trigger
can be conÞgured as one of three possibilities:

¥ The breakpoint trigger can be displayed on the DDATA bus with no internal reaction to the trigger.
The trigger state information is displayed on DDATA in all situations.

¥ The breakpoint trigger can force the processor to halt and allow BDM activities.

¥ The breakpoint trigger can generate a special debug interrupt to allow real-time systems to quickly
process the interrupt quickly and return to normal system executing as rapidly as possible.

The occurrence of a debug interrupt exception is treated as a special type of interrupt. It is considered to be
higher in priority than all normal interrupt requests and has special processor status values to indicate
externally that this interrupt occurred.

Additionally, the execution of the debug interrupt service routine is forced to be interrupt-inhibited by the
processor hardware. Optionally, it is capable of mapping all instruction and data references while in this
service routine into a separate address space, so that an emulator can deÞne the routine dynamically.

Current processor implementations include a state bit, invisible to software, that deÞnes this emulator mode
of operation. Note that the interrupt mask level is not modiÞed during the processing of a debug interrupt.

In response to customers with real-time embedded systems asking for the ability to service normal interrupt
requests while processing the debug interrupt service routine, this feature has been incorporated in the
Revision C debug. To provide this function and service any number of normal interrupt requests, including
the possibility of nested interrupts, the processor state signaling emulator mode is now included as part of
the exception stack frame, shown in Figure 7.

Table 13. D3/BE_CONFIG0, BE[3:0] Boot Configuration

D3/BE_CONFIG0 ConÞguration of Byte Enables for Boot CS0

0 BE[3:0] is enabled as byte write enables only

1 BE[3:0] is enabled as byte enables for reads and writes
Migrating from the ColdFire¨ MCF5307 to the MCF5407 11

Revision C Debug

As part of the Debug C enhancement, the operation of the debug interrupt is modiÞed as follows:

¥ The occurrence of the breakpoint trigger, conÞgured to generate a debug interrupt, is treated exactly
as before. The debug interrupt is treated as a higher priority exception relative to the normal
interrupt requests encoded on the interrupt priority input signals.

¥ At the appropriate sample point, the processor initiates debug interrupt exception processing. This
event is signaled externally by the generation of a unique PST value (PST = 0xD) asserted for
multiple cycles. The processor sets the emulator mode state bit as part of this processing.

¥ All normal interrupt requests are evaluated and sampled once per instruction during the debug
interrupt service routine. If an exception is detected, the processor takes the following steps:
1.In response to the new exception, the processor saves a copy of the current value of the emulator

mode state bit and then exits emulator mode by clearing the actual state.
2.The new exception stack frame sets bit 1 of the fault status Þeld, using the saved emulator mode

bit, indicating that execution while the processor is in emulator mode was interrupted. This
corresponds to bit [17] of the longword at the top of the system stack.

3.Control is passed to the appropriate exception handler.
4.When the exception handler is complete, a Return From Exception (RTE) instruction is executed.

During the processing of the RTE, the FS1 bit is reloaded from the system stack. If FS1 = 1,
the processor sets the emulator mode state and resumes execution of the original debug
interrupt service routine. This is signaled externally by the generation of the PST value that
originally identiÞed the occurrence of a debug interrupt exception, that is, PST = 0xD.

Implementation of this revised debug interrupt handling fully supports the servicing of any number of
normal interrupt requests while in a debug interrupt service routine. The emulator mode state bit is
essentially changed to a program-visible value, stored into memory when the exception stack frame is
created, and loaded from memory by the RTE instruction.

1.8.2 On-Chip Breakpoint Registers
The Debug B core debug module included three basic types of on-chip breakpoint registers:

¥ A 32-bit PC breakpoint register and a 32-bit PC breakpoint mask
¥ Two 32-bit address registers, which can be used to specify a single address or a range of addresses
¥ A 32-bit data breakpoint register and a 32-bit data breakpoint mask

The mask registers can be used to ÒdonÕt careÓ the equivalent bits in the breakpoint registers.

Additions to the breakpoint implementation are as follows:

¥ Three more 32-bit PC breakpoint registers

¥ Two more 32-bit address registers (ABLR1, ABHR1) plus an attribute register (AATR1) and mask
register, which can be used to specify a single address or a range of addresses

¥ One more 32-bit data breakpoint register and a 32-bit data breakpoint mask

The addition of these new breakpoint registers also requires the appropriate control and conÞguration
functions be added to the debug programming model. The affected BDM command and new register
formats are described below. The revised BDM command is write debug module register (WDMREG).

31 28 27 26 25 18 17 16 15 0

A7® Format FS[3–2] Vector[7–0] FS[1–0] Status Register

+ 0x04 Program counter[31:0]

Figure 7. Exception Stack Frame Form
12 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Revision C Debug

1.8.2.1 Write Debug Module Register (WDMREG)
The operand (longword) data is written to the speciÞed debug module register. All 32 bits of the register are
altered by the write operation. The debug moduleÕs programming model can be accessed either from the
serial BDM communication channel or from the processorÕs execution of the supervisor-mode WDEBUG
instruction. DSCLK must be inactive while WDEBUG executes.

Figure 8 deÞnes the operand data format.

Table 14 describes the DRc encoding for the debug registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 0xC 0x4 DRc

D[31:16]

D[15:0]

Figure 8. Write Debug Module Register Command (WDMREG)

Table 14. Definition of DRc EncodingÑWrite

DRc (hex) Debug Register DeÞnition Abbreviation Initial State (hex)

0x00 Configuration/Status CSR 0x0000

0x01–0x04 Reserved — —

0x05 BDM address attributes BAAR 0x0005

0x06 Bus attributes and mask AATR 0x0005

0x07 Trigger definition TDR 0x0000

0x08 PC breakpoint PBR —

0x09 PC breakpoint mask PBMR —

0x0A–0x0B Reserved — —

0x0C Operand address high breakpoint ABHR —

0x0D Operand address low breakpoint ABLR —

0x0E Data breakpoint DBR —

0x0F Data breakpoint mask DBMR —

0x10–0x15 Reserved — —

0x16 Bus attributes and mask 1 AATR1 0x0005

0x17 Extended trigger definition XTDR 0x0000

0x18 PC breakpoint 1 PBR1 0x0000

0x19 Reserved — —

0x1A PC breakpoint 2 PBR2 0x0000

0x1B PC breakpoint 3 PBR3 0x0000

0x1C Operand address high breakpoint 1 ABHR1 —

0x1D Operand address low breakpoint 1 ABLR1 —
Migrating from the ColdFire¨ MCF5307 to the MCF5407 13

Revision C Debug

Command Sequence:

Figure 9. WDMREG Command Sequence

Operand Data:

Longword data is written into the speciÞed debug register. Data is supplied most signiÞcant word
Þrst.

Result Data:

Command complete status (0x0FFFF) is returned when register write is complete.

1.8.3 Debug Programming Model
In addition to existing BDM commands that provide access to the processorÕs registers and the memory
subsystem, the debug module contains a number of registers to support the required functionality. These
registers are treated as 32-bit quantities, regardless of the number of bits in the implementation. The debug
control registers (DRc) are addressed using a 5-bit value as part of two new BDM commands (WDREG and
RDREG). These values are shown in Table 14.

These registers are also accessible from the processorÕs supervisor programming model through the
execution of the WDEBUG instruction. Thus, the breakpoint hardware within the debug module can be
accessed by the external development system using the serial interface or by the operating system running
on the processor core. It is the softwareÕs responsibility to guarantee that all accesses to these resources are
serialized and are logically consistent. The hardware provides a locking mechanism in the CSR to allow the
external development system to disable any attempted writes by the processor to the breakpoint registers
(setting IPW).

The following sections describe the newly added breakpoint registers in Debug C.

1.8.3.1 Address Breakpoint 1 Registers (ABLR1, ABHR1)
The 32-bit address breakpoint 1 registers deÞne an upper (ABHR1) and a lower (ABLR1) boundary for a
region in the operand logical address space of the processor that can be used as part of the trigger. The
ABLR1 and ABHR1 values are compared with the ColdFire CPU core address signals, as deÞned by the
setting of the trigger deÞnition register (TDR) and the extended trigger deÞnition register (XTDR).

1.8.3.2 Address Attribute Breakpoint Register 1 (AATR1)
The address attribute breakpoint register 1 (AATR1) deÞnes the address attributes and a mask associated
with ABLR1 and ABHR1 to be matched in the trigger. The AATR1 value is compared with the ColdFire
CPU core address attribute signals, as deÞned by the setting of the TDR and XTDR. The format of the
AATR1 is the same as the AATR register, as shown in Figure 10.

0x1E Data breakpoint 1 DBR1 —

0x1F Data breakpoint mask 1 DBMR1 —

Table 14. Definition of DRc EncodingÑWrite (Continued)

DRc (hex) Debug Register DeÞnition Abbreviation Initial State (hex)

MS DATA
"NOT READY"

XXX
"ILLEGAL"

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

WDMREG
???

NEXT CMD
"CMD COMPLETE"
14 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Revision C Debug
1.8.3.3 Program Counter Breakpoint Registers 1Ð3 (PBR1ÐPBR3)
Each of the program counter (PC) breakpoint registers (PBR, PBR1ÐPBR3), shown in Figure 11, deÞnes an
instruction address that can be used as part of the trigger. PBRn registers are compared with the processorÕs
program counter register when the appropriate valid bit is asserted and TDR is conÞgured appropriately.

The results of all PC breakpoint registers, PBR/PBMR, PBR1, PBR2, and PBR3, are logically summed to
form a single PC breakpoint trigger signal.

¥ PBRn[31:1] = program counter breakpoint address

¥ PBRn[0] = valid bit

1.8.3.4 Data Breakpoint Register 1 (DBR1, DBMR1)
The data breakpoint register 1 (DBR1) deÞnes a speciÞc data pattern that can be used as part of a trigger.
The DBR1 value is masked by DBMR1, allowing only those bits in DBR1 that have a corresponding zero
in DBMR1 to be compared with the ColdFire CPU core data signals, as deÞned in the TDR and the XTDR.

The data breakpoint registers support both aligned and misaligned operand references. The relationship
between the processor core address, the access size, and the corresponding location within the 32-bit core
data bus is deÞned in the DBR and DBMR description.

1.8.3.5 Extended Trigger DeÞnition Register (XTDR)
The XTDR enables the operation as deÞned by the new breakpoint registers, ABHR1, ABLR1, AATR1,
DBR1, and DBMR1, within the debug module and operates in conjunction with the trigger deÞnition
register (TDR). The added breakpoint logic can be included as a one- or two-level trigger; XTDR[29Ð18]
deÞne second-level triggers and XTDR[13Ð2] deÞne Þrst-level triggers, as shown in Figure 12.

The deÞnition of the XTDR register is exactly the same as the TDR for the control of the ABHR1, ABLR1,
DBR1 and DBMR1 breakpoint registers. The XTDR is cleared on reset.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field RM SZM TTM TMM R SZ TT TM

Reset 0000_0000_0000_0101

R/W Write only

DRc[4–0] 0x16 (AATR1)

Figure 10. Address Attribute Trigger Registers (AATR, AATR1)

31 1 0

Field Program Counter Valid

Reset — 0

R/W Write

DRc[4–0] 0x08 (PBR); 0x18 (PBR1); 0x1A (PBR2); 0x1B (PBR3)

Figure 11. Program Counter Breakpoint Registers (PBR, PBR1, PBR2, PBR3)
Migrating from the ColdFire¨ MCF5307 to the MCF5407 15

Revision C Debug
Table 15 describes XTDR Þelds.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Field — EBL EDLW EDWL EDWU EDLL EDLM EDUM EDUU DI EAI EAR EAL —

Reset — 00_0000_0000_00 —

R/W — Write only —

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field — EBL EDLW EDWL EDWU EDLL EDLM EDUM EDUU DI EAI EAR EAL —

Reset — 00_0000_0000_00 —

R/W — Write only —

DRc[4–0] 0x17

Figure 12. Extended Trigger Definition Register (XTDR)

Table 15. XTDR Field Descriptions

Bits Name Description

29/13 EBL Enable breakpoint level 2/enable breakpoint level 1. If set, EBL serves as the global enable for the
breakpoint trigger; that is, if TDR[EBL] or XTDR[EBL] is set, a breakpoint trigger is enabled. If
TDR[EBL] and XTDR[EBL] are cleared, all breakpoints are disabled.

28–22/
12–6

EDx Setting an ED bit enables the corresponding data breakpoint condition. Clearing all bits disables
the data breakpoint.

Bits Name Breakpoint Condition

28/12 EDL Data longword (entire data bus)

27/11 EDWL Lower data word (low-order word)

26/10 EDWU Upper data word (high-order word)

25/9 EDLL Lower lower data byte (low-order byte of the low-order word)

24/8 EDLM Lower middle data byte (high-order byte of the low-order word)

23/7 EDUM Upper middle data byte (low-order byte of the high-order word)

22/6 EDUU Upper upper data byte (high-order byte of the high-order word)

21/5 DI Data breakpoint invert. This bit provides a mechanism to invert the logical sense of all the data
breakpoint comparators. This can develop a trigger based on the occurrence of a data value not
equal to the one programmed into the DBR1.

20–18/
4–2

EAx Enable address bits. Setting an EA bit enables the corresponding address breakpoint. If all three
bits are cleared, this breakpoint is disabled.

Bits Name Breakpoint Condition

20/4 EAI Address breakpoint inverted. Range defined by ABLR1 and ABHR1.

19/3 EAR Address breakpoint range. Inclusive range defined by ABLR1 and ABHR1.

18/2 EAL Address breakpoint low. Address contained in ABLR1.

Second-Level Triggers

First-Level Triggers
16 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Revision C Debug
The resulting set of possible breakpoint trigger combinations consists of the following options where ||
denotes logical OR, && denotes logical AND, and {} denotes an optional additional trigger term:

One-level triggers of the form:

if (PC_breakpoint)
if (PC_breakpoint||Address_breakpoint{&&Data_breakpoint})
if (PC_breakpoint||Address_breakpoint{&&Data_breakpoint}

|| Address1_breakpoint{&&Data1_breakpoint})

if (Address_breakpoint {&& Data_breakpoint})
if ((Address_breakpoint {&& Data_breakpoint})

|| (Address1_breakpoint{&&Data1_breakpoint}))

if (Address1_breakpoint {&& Data1_breakpoint})

Two-level triggers of the form:

if (PC_breakpoint)
then if (Address_breakpoint{&&Data_breakpoint})

if (PC_breakpoint)
then if (Address_breakpoint{&&Data_breakpoint}

|| Address1_breakpoint{&&Data1_breakpoint})

if (PC_breakpoint)
then if (Address1_breakpoint{&&Data1_breakpoint})

if (Address_breakpoint {&& Data_breakpoint})
then if (Address1_breakpoint{&&Data1_breakpoint})

if (Address1_breakpoint {&& Data1_breakpoint})
then if (Address_breakpoint{&&Data_breakpoint})

if (Address_breakpoint {&& Data_breakpoint})
then if (PC_breakpoint)

if (Address1_breakpoint {&& Data1_breakpoint})
then if (PC_breakpoint)

if (Address_breakpoint {&& Data_breakpoint})
then if (PC_breakpoint

|| Address1_breakpoint{&&Data1_breakpoint})

if (Address1_breakpoint {&& Data1_breakpoint})
then if (PC_breakpoint

|| Address_breakpoint{&&Data_breakpoint})

In this example, PC_breakpoint is the logical summation of the PBR/PBMR, PBR1, PBR2, and PBR3
breakpoint registers; Address_breakpoint is a function of ABHR, ABLR, and AATR; Data_breakpoint is a
function of DBR and DBMR; Address1_breakpoint is a function of ABHR1, ABLR1, and AATR1; and
Data1_breakpoint is a function of DBR1 and DBMR1. In all cases, the data breakpoints can be included
with an address breakpoint to further qualify a trigger event as an option.

1.8.4 Debug Interrupt Exception Vectors
In the Debug B revision, if the occurrence of a hardware breakpoint is conÞgured to generate a debug
interrupt, this exception is mapped to vector number 12 (0x030). The actual debug interrupts can be broadly
classiÞed into two groupsÑPC breakpoints and all other types. A PC breakpoint is treated in a precise
mannerÑexception recognition and processing are initiated before the instruction at the given address is
Migrating from the ColdFire¨ MCF5307 to the MCF5407 17

Revision C Debug
executed. Conversely, all other breakpoint events are recognized on the given internal bus transaction, but
are made pending to the processor and sampled like other interrupt conditions. As a result, these types of
interrupts are imprecise by nature.

In response to a customer request that PC breakpoints be distinguishable from other type of trigger events,
the debug interrupt exception vector is expanded in Debug C of the MCF5407 to two unique entries, shown
in Table 16, where the occurrence of a PC breakpoint generates the 0x034 vector. In the case of a two-level
trigger, the last breakpoint event determines the exception vector.

1.8.5 Processor Status and Debug Data Output Signals
The Debug B architecture deÞnes processor status, PST[3:0] and debug data DDATA[3:0] signals, which
provide information to support real-time trace. In the Debug B design, these signals are output at the
processor frequency.

For the Debug C deÞnition, however, the PST and DDATA are combined and redeÞned to operate at half the
processorÕs operating frequency (provided by PSTCLK). Therefore, PSTDDATA[7:0] are used to output
both processor status and captured debug data values.

The example in Table 17 shows PSTDDATA output for the sequential execution of single-cycle instructions
A-F.

Cycle counts are relative to processor frequency. Consider the case where the DDATA module captures an
operand on a simple load instruction, mov.l <mem>,Rx. Table 18 shows the PSTDDATA output bus for this
case.

Table 16. Debug C Exception Vector Assignments

Vector Vector Offset Stacked Program Counter Assignment

12 0x030 Next Non-PC-breakpoint debug interrupt

13 0x034 Next PC-breakpoint debug Interrupt

Table 17. PSTDDATA Behavior: Sequential Execution of Single-Cycle Instructions

Cycle PSTDDATA[7:0]

 T (T = processor clock period) {PST for A, PST for B}

T+1 {PST for A, PST for B}

T+2 {PST for C, PST for D}

T+3 {PST for C, PST for D}

T+4 {PST for E, PST for F}

T+5 {PST for E, PST for F}

Table 18. PSTDDATA Behavior: Data Operand Captured

Cycle PSTDDATA[7:0]

T (T = processor clock period) {PST for mov.l, PST marker for captured operand} = {0x1, 0xB}

T+1 {0x1, 0xB}

T+2 {Operand[3:0], Operand[7:4]}

T+3 {Operand[3:0], Operand[7:4]}
18 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Revision C Debug
The PST marker and the accompanying data display are guaranteed to be sent contiguously. Except for this
transmission, the IDLE status (0x0) may appear at any time. There are no alignment restrictions; that is, the
PST values and operands may appear on either nibble of the PSTDDATA output bus. Given that the
real-time trace information appears as a sequence of 4-bit data values, the upper nibble of the output,
PSTDDATA[7:4], is considered more signiÞcant, that is, occurring before the lower nibble.

In Debug B, the DDATA outputs display the status of the internal breakpoint registers when they are not
displaying captured data values. For the Debug C design, any change to this breakpoint state is identiÞed by
a PST marker and then the new state value. SpeciÞcally, the marker for this breakpoint state change is a
single assertion of the value 0xD. Usually, the 0xD status is asserted for multiple cycles, indicating entry
into emulator mode in response to a debug interrupt exception. For Debug C, the posting of the 0xD status
can signal multiple events, based on the next value.

if the PSTDDATA stream includes {0xD, 0x2}
then Breakpoint state changed to Waiting for Level 1 Trigger

if the PSTDDATA stream includes {0xD, 0x4}
then Breakpoint state changed to Level 1 Breakpoint Triggered

if the PSTDDATA stream includes {0xD, 0xA}
then Breakpoint state changed to Waiting for Level 2 Trigger

if the PSTDDATA stream includes {0xD, 0xC}
then Breakpoint state changed to Level 2 Breakpoint Triggered

if the PSTDDATA stream includes {0xD, 0xD}
then Entry into Emulator Mode

Table 19 shows the revised deÞnition of the processor status encodings, where the values of {0xCÐ0xF} are
usually asserted for multiple cycles. The behavior of the 0xD value was described previously. The
PSTDDATA values of 0x2 and 0x6 are formerly reserved values now needed to support the Version 4
Operand Execution Pipeline.

T+4 {Operand[11:8], Operand[15:12]}

T+5 {Operand[11:8], Operand[15:12]}

T+6 {Operand[19:16], Operand[23:20]}

T+7 {Operand[19:16], Operand[23:20]}

T+8 {Operand[27:24], Operand[31:28]}

T+9 {Operand[27:24], Operand[31:28]}

T+10 (PST for next instruction A fin..}

T+11 (PST for next instruction, ...}

Table 19. Version 4 Debug C Processor Status Encodings

PSTDDATA Value DeÞnition

0x0 Continue execution

0x1 Begin execution of one instruction

0x2 Begin execution of two instructions

Table 18. PSTDDATA Behavior: Data Operand Captured (Continued)

Cycle PSTDDATA[7:0]
Migrating from the ColdFire¨ MCF5307 to the MCF5407 19

Voltage Input Changes
1.8.6 Debug C Summary
The preceding section describes additional functionality requested by ColdFire customers and third-party
developers. The Debug C enhancements are designed to retain backward compatibility with the previous
deÞnition.

1.9 Voltage Input Changes
The MCF5407 is manufactured in a 0.22-µ quad-layer-metal (QLM) technology. Whereas the MCF5407
logic operates at 1.8 V, the device pads are standard TTL-compatible and therefore can drive a 2.4-V
minimum output and accepts a 3.3-V input. Thus, the MCF5407 requires both 1.8- and 3.3-V power
supplies. This speciÞcation differs from the MCF5307, which operates at 3.3 V with 5-V-tolerant I/O pads.
Although the power and ground pin assignment are the same for both the MCF5307 and MCF5407, the
power pin allocation of the MCF5407 is divided between 1.8- and 3.3-V supply levels. Thus, two power
rails are necessary to supply power to the MCF5407.

Note that the MCF5407 meets the EIA/JEDEC standard for 1.8-V power supply voltage and interface
requirements. See the JEDEC standard (EIA/JESD8-7, February 1997).

1.10 PLL Power Supply Filter Circuit
To ensure PLL stability, the power supply to the PLL power pin should be Þltered using a circuit similar to
the one shown in Figure 13. The circuit should be as close as possible to the PLL power pin to ensure
maximum noise Þltering. This Þlter design can be used for both the MCF5307 and MCF5407.

0x3 Entry into user-mode

0x4 Begin execution of PULSE or WDDATA instruction

0x5 Begin execution of taken branch

0x6 Begin execution of an instruction plus a taken branch

0x7 Begin execution of RTE instruction

0x8 Begin 1-byte data transfer on PSTDDATA

0x9 Begin 2-byte data transfer on PSTDDATA

0xA Begin 3-byte data transfer on PSTDDATA

0xB Begin 4-byte data transfer on PSTDDATA

0xC Exception processing

0xD Breakpoint state change, or entry into emulator mode

0xE Processor is stopped, waiting for interrupt

0xF Processor is halted

Table 19. Version 4 Debug C Processor Status Encodings (Continued)

PSTDDATA Value DeÞnition
20 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Pin-Assignment Compatibility
.

Figure 13. PLL Power Supply Filter Circuit

1.11 Pin-Assignment Compatibility
The MCF5407 pinout is identical to the MCF5307 except for the power pin allocation and
PSTDDATA[7:0], which make available the contents of processor status, PST[3:0], and debug data,
DDATA[3:0]. Therefore, when designing-in the MCF5407, note which power pins require 1.8 V and which
require 3.3 V. The MCF5407 footprint is the same as the MCF5307, which is a 208-pin plastic quad ßat pack
(QFP).

1.12 Mechanical Data
This section provides a function pin listing and package diagram for the MCF5407. See URL
[http://www.motorola.com/coldÞre] for any updated information.

1.12.1 Package
The MCF5407 is assembled in a 208-pin, thermally enhanced plastic QFP package.

1.12.2 Pinout
The MCF5407 pinout is described in Table 20 through Table 23, including signal multiplexing. Additional
columns indicate the direction, description, and output drive capability of each pin.

Table 20. Pins 1Ð52 (Left, Top-to-Bottom)

Pin Alternate
Function

I/O Description
Drive
(mA)No Name

1 IVCC — — 1.8-V power input —

2 A0 — I/O Address bus bit 8

3 A1 — I/O Address bus bit 8

4 GND — — Ground pin —

5 A2 — I/O Address bus bit 8

6 A3 — I/O Address bus bit 8

7 EVCC — — 3.3-V power input —

8 A4 — I/O Address bus bit 8

9 A5 — I/O Address bus bit 8

10 GND — — Ground pin —

11 A6 — I/O Address bus bit 8

10 W

10 mF 0.1 mF

PLL power pinVdd
Migrating from the ColdFire¨ MCF5307 to the MCF5407 21

Mechanical Data
12 A7 — I/O Address bus bit 8

13 EVCC — — 3.3-V power input —

14 A8 — I/O Address bus bit 8

15 A9 — I/O Address bus bit 8

16 A10 — I/O Address bus bit 8

17 GND — — Ground pin —

18 A11 — I/O Address bus bit 8

19 A12 — I/O Address bus bit 8

20 A13 — I/O Address bus bit 8

21 EVCC — — 3.3-V power input —

22 A14 — I/O Address bus bit 8

23 A15 — I/O Address bus bit 8

24 A16 — I/O Address bus bit 8

25 GND — — Ground pin —

26 A17 — I/O Address bus bit 8

27 A18 — I/O Address bus bit 8

28 A19 — I/O Address bus bit 8

29 EVCC — — 3.3-V power input —

30 A20 — I/O Address bus bit 8

31 A21 — I/O Address bus bit 8

32 A22 — I/O Address bus bit 8

33 GND — — Ground pin —

34 A23 — I/O Address bus bit 8

35 PP8 A24 I/O Parallel port bit/Address bus bit 8

36 PP9 A25 I/O Parallel port bit/Address bus bit 8

37 EVCC — — 3.3-V power input —

38 PP10 A26 I/O Parallel port bit/Address bus bit 8

39 PP11 A27 I/O Parallel port bit/Address bus bit 8

40 PP12 A28 I/O Parallel port bit/Address bus bit 8

41 GND — — Ground pin —

42 PP13 A29 I/O Parallel port bit/Address bus bit 8

43 PP14 A30 I/O Parallel port bit/Address bus bit 8

44 PP15 A31 I/O Parallel port bit/Address bus bit 8

45 EVCC — — 3.3-V power input —

Table 20. Pins 1Ð52 (Left, Top-to-Bottom) (Continued)

Pin Alternate
Function

I/O Description
Drive
(mA)No Name
22 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Mechanical Data

46 SIZ0 — I/O Size attribute 8

47 SIZ1 — I/O Size attribute 8

48 GND — — Ground pin —

49 OE — O Output enable for chip selects 8

50 CS0 — O Chip select 8

51 CS1 — O Chip select 8

52 EVCC — — 3.3-V power input —

Table 21. Pins 53Ð104 (Bottom, Left-to-Right)

Pin Alternate
Function

I/O Description
Drive
(mA)No Name

53 GND — — Ground pin —

54 CS2 — O Chip select 8

55 CS3 — O Chip select 8

56 CS4 — O Chip select 8

57 IVCC — — 1.8-V power input —

58 CS5 — O Chip select 8

59 CS6 — O Chip select 8

60 CS7 — O Chip select 8

61 GND — — Ground pin —

62 AS — I/O Address strobe 8

63 R/W — I/O Read/Write 8

64 TA — I/O Transfer acknowledge 8

65 EVCC — — 3.3-V power input —

66 TS — I/O Transfer start 8

67 RSTI — I Reset —

68 IRQ7 — I Interrupt request —

69 GND — — Ground pin —

70 IRQ5 IRQ4 I Interrupt request —

71 IRQ3 IRQ6 I Interrupt request —

72 IRQ1 IRQ2 I Interrupt request —

73 IVCC — — 1.8-V power input —

74 BR — O Bus request 8

75 BD — O Bus driven 8

Table 20. Pins 1Ð52 (Left, Top-to-Bottom) (Continued)

Pin Alternate
Function

I/O Description
Drive
(mA)No Name
Migrating from the ColdFire¨ MCF5307 to the MCF5407 23

Mechanical Data
76 BG — I Bus grant —

77 GND — — Ground pin —

78 TOUT1 — O Timer output 8

79 TOUT0 — O Timer output 8

80 TIN0 — I Timer input —

81 EVCC — — 3.3-V power input —

82 TIN1 — I Timer input —

83 RAS0 — O DRAM row address strobe 16

84 RAS1 — O DRAM row address strobe 16

85 GND — — Ground pin —

86 CAS0 — O DRAM column address strobe 16

87 CAS1 — O DRAM column address strobe 16

88 CAS2 — O DRAM column address strobe 16

89 EVCC — — 3.3-V power input —

90 CAS3 — O DRAM column address strobe 16

91 DRAMW — O DRAM write 16

92 SRAS — O SDRAM row address strobe 16

93 GND — — Ground pin —

94 SCAS — O SDRAM column address strobe 16

95 SCKE — O SDRAM clock enable 16

96 BE0 BWE0 O Byte enable/byte write enable 8

97 EVCC — — 3.3-V power input —

98 BE1 BWE1 O Byte enable/byte write enable 8

99 BE2 BWE2 O Byte enable/byte write enable 8

100 BE3 BWE3 O Byte enable/byte write enable 8

101 GND — — Ground pin —

102 SCL — I/OD 1 Serial clock line 8

103 SDA — I/OD 1 Serial data line 8

104 GND — — Ground pin —

1 OD: Open-drain output

Table 21. Pins 53Ð104 (Bottom, Left-to-Right) (Continued)

Pin Alternate
Function

I/O Description
Drive
(mA)No Name
24 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Mechanical Data

Table 22. Pins 105Ð156 (Right, Bottom-to-Top)

Pin
Alternate Function I/O Description

Drive
(mA)No Name

105 IVCC — — 1.8-V power input —

106 D31 — I/O Data bus 8

107 D30 — I/O Data bus 8

108 D29 — I/O Data bus 8

109 GND — — Ground pin —

110 D28 — I/O Data bus 8

111 D27 — I/O Data bus 8

112 D26 — I/O Data bus 8

113 EVCC — — 3.3-V power input —

114 D25 — I/O Data bus 8

115 D24 — I/O Data bus 8

116 D23 — I/O Data bus 8

117 GND — — Ground pin —

118 D22 — I/O Data bus 8

119 D21 — I/O Data bus 8

120 D20 — I./O Data bus 8

121 EVCC — — 3.3-V power input —

122 D19 — I/O Data bus 8

123 D18 — I/O Data bus 8

124 D17 — I/O Data bus 8

125 GND — — Ground pin —

126 D16 — I/O Data bus 8

127 D15 — I/O Data bus 8

128 D14 — I/O Data bus 8

129 EVCC — — 3.3-V power input —

130 D13 — I/O Data bus 8

131 D12 — I/O Data bus 8

132 D11 — I/O Data bus 8

133 GND — — Ground pin —

134 D10 — I/O Data bus 8

135 D9 — I/O Data bus 8

136 D8 — I/O Data bus 8

137 EVCC — — 3.3-V power input —

138 D7 CS_CONF2 I/O Data bus/Chip select configuration 8
Migrating from the ColdFire¨ MCF5307 to the MCF5407 25

Mechanical Data

139 D6 CS_CONF1 I/O Data bus/Chip select configuration 8

140 D5 CS_CONF0 I/O Data bus/Chip select configuration 8

141 GND — — Ground pin —

142 D4 ADDR_CONF I/O Data bus/Address configuration 8

143 D3 BE_CONFIG0 I/O Data bus/Byte enable configuration 8

144 D2 DIVIDE2 I/O Data bus/Divide control PCLK:CLKIN 8

145 EVCC — — 3.3-V power input —

146 D1 DIVIDE1 I/O Data bus/Divide control PCLK:CLKIN 8

147 D0 DIVIDE0 I/O Data bus/Divide control PCLK:CLKIN 8

148 GND — — Ground pin —

149 DSCLK TRST I Debug serial clock/JTAG Reset —

150 TCK TCK I JTAG clock —

151 DSO TDO O Debug serial out/JTAG data out 8

152 IVCC — — 1.8-V power input —

153 DSI TDI I Debug serial input/JTAG data in —

154 BKPT TMS I Debug breakpoint/JTAG mode select —

155 HIZ — I High impedance override —

156 GND — — Ground pin —

Table 23. Pins 157Ð208 (Top, Right-to-Left)

Pin Alternate
Function

I/O Description
Drive
(mA)No Name

157 IVCC — — 1.8-V power input —

158 CTS1 — I UART1 clear-to-send —

159 RTS1 — O UART1 request-to-send 8

160 RXD1 — I UART1 receive data —

161 TXD1 — O UART1 transmit data 8

162 GND — — Ground pin —

163 CTS0 — I UART0 clear-to-send —

164 RTS0 — O UART0 request-to-send 8

165 RXD0 — I UART0 receive data —

166 TXD0 — O UART0 transmit data 8

167 EVCC — — 3.3-V power input —

168 EDGESEL — I SDRAM bus clock edge select —

Table 22. Pins 105Ð156 (Right, Bottom-to-Top) (Continued)

Pin
Alternate Function I/O Description

Drive
(mA)No Name
26 Migrating from the ColdFire¨ MCF5307 to the MCF5407

Mechanical Data
169 GND — — Ground pin —

170 BCLKO — O Bus clock output 16

171 IVCC — — 1.8-V power input —

172 RSTO — O Processor reset output 8

173 GND — — Ground pin —

174 CLKIN — I System bus clock input —

175 IVCC — — 1.8-V power input —

176 MTMOD0 — I JTAG/BDM select (Tie high or low) —

177 MTMOD1 — I Tie high or low —

178 PGND — — PLL ground pin —

179 NC — O No connect —

180 PVCC — — 1.8-V filter supply for PLL —

181 MTMOD2 — I Tie high or low —

182 MTMOD3 — I Tie high or low —

183 GND — — Ground pin —

184 PSTCLK — O Processor status clock 8

185 IVCC — — 1.8-V power input —

186 PSTDDATA0 — O Processor status/debug data 8

187 PSTDDATA1 — O Processor status/debug data 8

188 GND — — Ground pin —

189 PSTDDATA2 — O Processor status/debug data 8

190 PSTDDATA3 — O Processor status/debug data 8

191 EVCC — — 3.3-V power input —

192 PSTDDATA4 — O Processor status/debug data 8

193 PSTDDATA5 — O Processor status/debug data 8

194 GND — — Ground pin —

195 PSTDDATA6 — O Processor status/debug data 8

196 PSTDDATA7 — O Processor status/debug data 8

197 IVCC — — 1.8-V power input —

198 PP7 TIP I/O Parallel port bit/transfer in progress 8

199 PP6 DREQ0 I/O Parallel port bit/DMA request 8

200 PP5 DREQ1 I/O Parallel port bit/DMA request 8

201 GND — — Ground pin —

202 PP4 TM2 I/O Parallel port bit/Transfer modifier 8

Table 23. Pins 157Ð208 (Top, Right-to-Left) (Continued)

Pin Alternate
Function

I/O Description
Drive
(mA)No Name
Migrating from the ColdFire¨ MCF5307 to the MCF5407 27

Mechanical Data
1.12.3 Mechanical Diagram
Figure 14 is a mechanical diagram of the 208-pin QFP MCF5407.

203 PP3 TM1/DACK11 I/O Parallel port bit/Transfer modifier/DMA acknowledge 8

204 PP2 TM0/DACK01 I/O Parallel port bit/Transfer modifier/DMA acknowledge 8

205 EVCC — — 3.3-V power input —

206 PP1 TT1 I/O Parallel port bit/Transfer type 8

207 PP0 TT0 I/O Parallel port bit/Transfer type 8

208 GND — — Ground pin —

1 When the internal DMA is used, PP3 and PP2 (PP[3:2]/TM[1:0]) can be programmed to a third function,
(DACK[1:0]), which indicates DMA acknowledge.

Table 23. Pins 157Ð208 (Top, Right-to-Left) (Continued)

Pin Alternate
Function

I/O Description
Drive
(mA)No Name
28 Migrating from the ColdFire¨ MCF5307 to the MCF5407

ColdFire Instruction Set Architecture Enhancements
Figure 14. Mechanical Diagram

1.13 ColdFire Instruction Set Architecture
Enhancements

This section describes the new opcodes implemented as part of the Revision B (ISA B) enhancements to the
basic ColdFire ISA. In some cases, the opcodes represent minor enhancements to existing ColdFire
functions, while in other cases, the functionality is new and not covered in the existing ISA.

IVCC
A0
A1

GND
A2
A3

EVCC
A4
A5

GND
A6
A7

EVCC
A8
A9

A10
GND
A11
A12
A13

EVCC
A14
A15
A16

GND
A17
A18
A19

EVCC
A20
A21
A22

GND
A23
PP8
PP9

EVCC
PP10
PP11
PP12
GND
PP13
PP14
PP15

EVCC
SIZ0
SIZ1
GND

OE
CS0
CS1

EVCC

G
N

D
C

S
2

C
S

3
C

S
4

IV
C

C
C

S
5

C
S

6
C

S
7

G
N

D
A

S
R

/W TA
E

V
C

C T
S

R
S

T
I

IR
Q

7
G

N
D

IR
Q

5
IR

Q
3

IR
Q

1
IV

C
C

B
R

B
D

B
G

G
N

D
TO

U
T

1
TO

U
T

0
T

IN
0

E
V

C
C

T
IN

1
R

A
S

0
R

A
S

1
G

N
D

C
A

S
0

C
A

S
1

C
A

S
2

E
V

C
C

C
A

S
3

D
R

A
M

W
S

R
A

S
G

N
D

S
C

A
S

S
C

K
E

B
E

0
E

V
C

C
B

E
1

B
E

2
B

E
3

G
N

D
S

C
L

S
D

A
G

N
D

IVCC
D31
D30
D29
GND
D28
D27
D26
EVCC
D25
D24
D23
GND
D22
D21
D20
EVCC
D19
D18
D17
GND
D16
D15
D14
EVCC
D13
D12
D11
GND
D10
D9
D8
EVCC
D7
D6
D5
GND
D4
D3
D2
EVCC
D1
D0
GND
DSCLK
TCK
DSO
IVCC
DSI
BKPT
HIZ
GND

IV
C

C
C

T
S

1
R

T
S

1
R

X
D

1
T

X
D

1
G

N
D

C
T

S
0

R
T

S
0

R
X

D
0

T
X

D
0

E
V

C
C

E
D

G
E

S
E

L
G

N
D

B
C

LK
O

IV
C

C
R

S
T O

G
N

D
C

LK
IN

IV
C

C
M

T
M

O
D

0
M

T
M

O
D

1
P

G
N

D
N

C
P

V
C

C
M

T
M

O
D

2
M

T
M

O
D

3
G

N
D

P
S

T
C

LK
IV

C
C

P
S

T
D

D
AT

A
0

P
S

T
D

D
AT

A
1

G
N

D
P

S
T

D
D

AT
A

2
P

S
T

D
D

AT
A

3
E

V
C

C
P

S
T

D
D

AT
A

4
P

S
T

D
D

AT
A

5
G

N
D

P
S

T
D

D
AT

A
6

P
S

T
D

D
AT

A
7

IV
C

C
P

P
7

P
P

6
P

P
5

G
N

D
P

P
4

P
P

3
P

P
2

E
V

C
C

P
P

1
P

P
0

G
N

D
1

52

53 104

105

208 157

156

10

5

10

15

20

25

30

35

40

45

50

145

150

140

135

130

125

120

115

110

105

155

6055 65 70 75 80 85 90 95 10
0

20
0

20
5

19
5

19
0

18
5

18
0

17
5

17
0

16
5

16
0

Migrating from the ColdFire¨ MCF5307 to the MCF5407 29

ColdFire Instruction Set Architecture Enhancements
Bcc Bcc
Branch Conditionally

Operation: If Condition True
Then PC + dn ® PC

Assembler Syntax: Bcc <label>

Attributes: Size = byte, word, long

Description: If the speciÞed condition is true, program execution continues at location (PC) + displacement.
The program counter contains the address of the instruction word for the Bcc instruction, plus two. The
displacement is a twoÕs-complement integer that represents the relative distance in bytes from the current
program counter to the destination program counter. If the 8-bit displacement Þeld in the instruction word
is 0, a 16-bit displacement (the word immediately after the instruction) is used. If the 8-bit displacement
Þeld in the instruction word is all ones (0xFF), the 32-bit displacement (longword immediately following
the instruction) is used. Condition code cc speciÞes one of the following conditional tests:

Condition Codes: Not affected

Instruction Fields:

¥ Condition ÞeldÑBinary code for one of the conditions listed in the table.

¥ 8-bit displacement ÞeldÑTwoÕs complement integer specifying the number of bytes between the
branch instruction and the next instruction to be executed if the condition is met.

¥ 16-bit displacement ÞeldÑUsed for displacement when the 8-bit displacement contains 0x00.

¥ 32-bit displacement ÞeldÑUsed for displacement when the 8-bit displacement contains 0xFF.

NOTE:
A branch to the next immediate instruction uses the 16-bit displacement
format because the 8-bit displacement Þeld contains 0x00 (zero offset).

Code Condition Code Condition Code Condition Code Condition

CC(HI) Carry clear GT Greater than LT Less than VC Overflow clear

CS(LO) Carry set HI High MI Minus VS Overflow set

EQ Equal LE Less or equal NE Not equal

GE Greater or equal LS Low or same PL Plus

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

0 1 1 0 Condition 8-bit displacement

16-bit displacement if 8-bit displacement = 0x00

32-bit displacement if 8-bit displacement = 0xFF

Bcc V2, V3 Core V4 Core

Opcode present Yes Yes

Operand sizes supported .b, .w .b, .w, .l
30 Migrating from the ColdFire¨ MCF5307 to the MCF5407

ColdFire Instruction Set Architecture Enhancements
BRA BRA
Branch Always

Operation: PC + dn ® PC

Assembler Syntax: BRA <label>

Attributes: Size = byte, word, long

Description: Program execution continues at location (PC) + displacement. The program counter contains
the address of the instruction word of the BRA instruction, plus two. The displacement is a twoÕs
complement integer that represents the relative distance in bytes from the current program counter to the
destination program counter. If the 8-bit displacement Þeld in the instruction word is 0, a 16-bit
displacement (the word immediately following the instruction) is used. If the 8-bit displacement Þeld in the
instruction word is all ones (0xFF), the 32-bit displacement (longword immediately following the
instruction) is used.

Condition codes: Not affected

Instruction Fields:

¥ 8-bit displacement ÞeldÑtwoÕs complement integer specifying the number of bytes between the
branch instruction and the next instruction to be executed.

¥ 16-bit displacement ÞeldÑUsed for displacement when the 8-bit displacement contains 0x00.

¥ 32-bit displacement ÞeldÑUsed for displacement when the 8-bit displacement contains 0xFF.

NOTE:
A branch to the next immediate instruction automatically uses the 16-bit
displacement format because the 8-bit displacement Þeld contains 0x00
(zero offset).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

0 1 1 0 0 0 0 0 8-bit displacement

16-bit displacement if 8-bit displacement = 0x00

32-bit displacement if 8-bit displacement = 0xFF

BRA V2, V3 Core V4 Core

Opcode present Yes Yes

Operand sizes supported .b, .w .b, .w, .l
Migrating from the ColdFire¨ MCF5307 to the MCF5407 31

ColdFire Instruction Set Architecture Enhancements
BSR BSR
Branch to Subroutine

Operation:SP Ð 4 ® SP; PC ® (SP); PC + dn ® PC

Assembler Syntax: BSR <label>

Attributes: Size = byte, word, long

Description: Pushes the word address of the instruction immediately following the BSR instruction onto the
system stack. The program counter contains the address of the instruction word, plus two. Program
execution then continues at location (PC) + displacement. The displacement is a twoÕs complement integer
that represents the relative distance in bytes from the current program counter to the destination program
counter. If the 8-bit displacement Þeld in the instruction word is 0, a 16-bit displacement (the word
immediately following the instruction) is used. If the 8-bit displacement Þeld in the instruction word is all
ones (0xFF), the 32-bit displacement (longword immediately following the instruction) is used.

Condition Codes: Not affected

Instruction Fields:

¥ 8-bit displacement ÞeldÑtwoÕs complement integer specifying the number of bytes between the
branch instruction and the next instruction to be executed.

¥ 16-bit displacement ÞeldÑUsed for displacement when the 8-bit displacement contains 0x00.

¥ 32-bit displacement ÞeldÑUsed for displacement when the 8-bit displacement contains 0xFF.

NOTE:
A branch to the next immediate instruction automatically uses the 16-bit
displacement format because the 8-bit displacement Þeld contains 0x00
(zero offset).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

0 1 1 0 0 0 0 1 8-bit displacement

16-bit displacement if 8-bit displacement = 0x00

32-bit displacement if 8-bit displacement = 0xFF

BSR V2, V3 Core V4 Core

Opcode present Yes Yes

Operand sizes supported .b, .w .b, .w, .l
32 Migrating from the ColdFire¨ MCF5307 to the MCF5407

ColdFire Instruction Set Architecture Enhancements
CMP CMP
Compare

Operation:Destination Ð Source ® cc

Assembler Syntax: CMP <ea>y, Dx

Attributes: Size = byte, word, long

Description: Subtracts the source operand from the destination operand in the data register and sets
condition codes according to the result; the data register is unchanged. The operation size may be a byte,
word, or longword.

CMPA is used when the destination is an address register; CMPI is used when the source is immediate data.
Most assemblers automatically make this distinction.

Condition Codes:

Instruction Fields:

¥ Register ÞeldÑspeciÞes the destination register.

¥ Opmode Þeld:

¥ Effective address Þeld speciÞes the source operand; use addressing modes in the following table:

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow occurs; cleared otherwise
C Set if a borrow occurs; cleared otherwise

— * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

1 0 1 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Byte Word Long Operation

000 001 010 Dx - <ea>y

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (d8,Ay,Xi) 110 reg. number:Ay

Ay (word/longword operand only) 001 reg. number:Ay (xxx).W 111 000

(Ay) 010 reg. number:Ay (xxx).L 111 001

(Ay) + 011 reg. number:Ay #<data> 111 100

– (Ay) 100 reg. number:Ay (d16,PC) 111 010

(d16,Ay) 101 reg. number:Ay (d8,PC,Xi) 111 011

CMP V2, V3 Core V4 Core

Opcode present Yes Yes

Operand sizes supported .l .b, .w, .l
Migrating from the ColdFire¨ MCF5307 to the MCF5407 33

ColdFire Instruction Set Architecture Enhancements
CMPA CMPA
Compare Address

Operation: Destination Ð Source ® cc

Assembler Syntax: CMPA <ea>y, Ax

Attributes: Size = word, long

Description: Operates similarly to CMP, but is used when the destination register is an address register rather
than a data register. The operation size can be word or longword. Word-length source operands are
sign-extended to 32 bits for comparison.

Condition Codes:

Instruction Fields:

¥ Register ÞeldÑspeciÞes the destination register.

¥ Opmode Þeld:

¥ Effective address Þeld speciÞes the source operand; use addressing modes in the following table:

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow occurs; cleared otherwise
C Set if a borrow occurs; cleared otherwise

— * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

1 0 1 1 REGISTER OPMODE
EFFECTIVE ADDRESS

MODE REGISTER

Byte Word Long Operation

— 011 111 Ax - <ea>y

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (d8,Ay,Xi) 110 reg. number:Ay

Ay (word/longword operand only) 001 reg. number:Ay (xxx).W 111 000

(Ay) 010 reg. number:Ay (xxx).L 111 001

(Ay) + 011 reg. number:Ay #<data> 111 100

– (Ay) 100 reg. number:Ay (d16,PC) 111 010

(d16,Ay) 101 reg. number:Ay (d8,PC,Xi) 111 011

CMPA V2, V3 Core V4 Core

Opcode present Yes Yes

Operand sizes supported .l .w, .l
34 Migrating from the ColdFire¨ MCF5307 to the MCF5407

ColdFire Instruction Set Architecture Enhancements
CMPI CMPI
Compare Immediate

Operation:Destination Ð Immediate Data ® cc

Assembler Syntax: CMPI #<data>, Dx

Attributes: Size = byte, word, long

Description: Operates similarly to CMP, but is used when the source operand is immediate data. The size of
the immediate data The size of the operation may be speciÞed as byte, word, or longword. The size of the
immediate data matches the operation size.

Condition Codes:

Instruction Fields:

¥ Register ÞeldÑdestination data register.

¥ Size Þeld:

NOTE:
If size = byte, the immediate is contained in bits [7:0] of the single
extension word.

If size = word, the immediate is contained in bits[15:0] of the single
extension word.

If size = long, the immediate is contained in the two extension words.

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Set if an overflow occurs; cleared otherwise
C Set if a borrow occurs; cleared otherwise

— * * * *

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

0 0 0 0 1 1 0 0 SIZE 0 0 0 REGISTER

UPPER WORD

LOWER WORD

Byte Word Long Operation

00 01 10 Dx - #<data>

CMPI V2, V3 Core V4 Core

Opcode present Yes Yes

Operand sizes supported .l .b, .w, .l
Migrating from the ColdFire¨ MCF5307 to the MCF5407 35

ColdFire Instruction Set Architecture Enhancements
INTOUCH INTOUCH
Instruction Fetch Touch

Operation: If Supervisor State
then Instruction Fetch Touch @ <Ay>

else TRAP

Assembler Syntax INTOUCH <Ay>

Attributes: Unsized

Description: Generates an instruction fetch reference at address (Ay). If the referenced address space is a
cacheable region, this instruction can be used to prefetch a 16-byte packet into the processorÕs instruction
cache. If the referenced instruction address is a non-cacheable space, the instruction effectively performs no
operation.

The INTOUCH instruction can be used to prefetch, and with the later setting of CACR[11], lock speciÞc
memory lines in the processorÕs instruction cache. This function may be desirable in systems where
deterministic real-time performance is critical.

Condition Codes: Not affected.

Instruction Fields:

¥ Register ÞeldÑspeciÞes the destination address register number.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

1 1 1 1 0 1 0 0 0 0 1 0 1 REGISTER

INTOUCH V2, V3 Core V4 Core

Opcode present No Yes

Operand sizes supported — —
36 Migrating from the ColdFire¨ MCF5307 to the MCF5407

ColdFire Instruction Set Architecture Enhancements
MOVE MOVE
Move Data from Source to Destination

Operation:Source ® Destination

Assembler Syntax: MOVE <ea>y, <ea>x

Attributes: Size = byte, word, long

Description: Moves the data at the source to the destination location and sets the condition codes according
to the data. The size of the operation may be speciÞed as byte, word, or longword.

Condition Codes:

Instruction Þelds:

¥ Size ÞeldÑspeciÞes the size of the operand to be moved:

01 Ñbyte operation
11 Ñword operation
10 Ñlong operation

¥ Destination effective address ÞeldÑSpeciÞes destination location; the table below lists possible
data alterable addressing modes. The restrictions on combinations of source and destination
addressing modes are listed in the table at the bottom of the next page.

¥ Source effective address ÞeldÑSpeciÞes source operand; the table below lists possible addressing
modes. The ColdFire MOVE instruction has restrictions on combinations of source and destination
addressing modes. The table at the end of this instruction description outlines the restrictions.

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format: 0 0 SIZE

DESTINATION SOURCE

REGISTER MODE MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (d8,Ax,Xi) 110 reg. number:Ax
Ax — — (xxx).W 111 000

(Ax) 010 reg. number:Ax (xxx).L 111 001
(Ax) + 011 reg. number:Ax #<data> — —
– (Ax) 100 reg. number:Ax (d16,PC) — —

(d16,Ax) 101 reg. number:Ax (d8,PC,Xi) — —
Migrating from the ColdFire¨ MCF5307 to the MCF5407 37

ColdFire Instruction Set Architecture Enhancements
NOTE:
Most assemblers use MOVEA when the destination is an address register.

Use MOVEQ to move an immediate 8-bit value to a data register. Use
MOV3Q to move a 3-bit immediate value to any effective destination
address.

Not all combinations of source/destination addressing modes are possible.
The table below shows the possible combinations.

Note: The combination of #<xxx>,d16(Ax) addressing modes can be used only on move byte and move word
opcodes. Refer to the previous tables for valid source and destination addressing modes.

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (d8,Ay,Xi) 110 reg. number:Ay
Ay 001 reg. number:Ay (xxx).W 111 000

(Ay) 010 reg. number:Ay (xxx).L 111 001
(Ay) + 011 reg. number:Ay #<data> 111 100
– (Ay) 100 reg. number:Ay (d16,PC) 111 010

(d16,Ay) 101 reg. number:Ay (d8,PC,Xi) 111 011

Source Addressing Mode Destination Addressing Mode

Dy, Ay, (Ay), (Ay)+,-(Ay) All possible

(d16, Ay), (d16, PC) All possible except (d8, Ax, Xi), (xxx).W, (xxx).L

(d8, Ay, Xi), (d8, PC, Xi), (xxx).W, (xxx).L, #<xxx> All possible except (d8, Ax, Xi), (xxx).W, (xxx).L

MOVE V2, V3 Core V4 Core

Opcode present Yes Yes

Operand sizes supported .b, .w, .l
except

move.x #<data>, d16(Ax)

.b, .w, .l
including

move.{b,w} #<data>, d16(Ax)
38 Migrating from the ColdFire¨ MCF5307 to the MCF5407

ColdFire Instruction Set Architecture Enhancements
MOVEA MOVEA
Move Address from Source to Destination

Operation:Source ® Destination

Assembler Syntax: MOVEA <ea>y, Ax

Attributes: Size = word, long

Description: Moves the address at the source to the destination location and sets the condition codes
according to the data. The size of the operation may be speciÞed as word or longword.

Condition Codes: Not affected

Instruction Þelds:

¥ Size ÞeldÑspeciÞes the size of the operand to be moved:

11 Ñword operation
10 Ñlong operation

¥ Destination effective address ÞeldÑSpeciÞes the destination location; the table below lists possible
addressing modes.

¥ Source effective address ÞeldÑSpeciÞes the source operand; the table below lists possible modes.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format: 0 0 SIZE

DESTINATION SOURCE

REGISTER MODE MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dx — — (d8,Ax,Xi) — —
Ax 001 reg. number: Ax (xxx).W — —

(Ax) — — (xxx).L — —
(Ax) + — — #<data> — —
– (Ax) — — (d16,PC) — —

(d16,Ax) — — (d8,PC,Xi) — —

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (d8,Ay,Xi) 110 reg. number:Ay
Ay 001 reg. number:Ay (xxx).W 111 000

(Ay) 010 reg. number:Ay (xxx).L 111 001
(Ay) + 011 reg. number:Ay #<data> 111 100
– (Ay) 100 reg. number:Ay (d16,PC) 111 010

(d16,Ay) 101 reg. number:Ay (d8,PC,Xi) 111 011

MOVEA V2, V3 Core V4 Core

Opcode present Yes Yes

Operand sizes supported No differences
Migrating from the ColdFire¨ MCF5307 to the MCF5407 39

ColdFire Instruction Set Architecture Enhancements
MOV3Q MOV3Q
Move 3-Bit Data Quick

Operation:Immediate Data ® Destination

Assembler Syntax MOV3Q #<data>,<ea>x

Attributes: Size = long

Description: Move the immediate data to the operand at the destination location. The data range is from -1
to 7, excluding 0. The immediate data is zero-Þlled to a long operand and all 32 bits are transferred to the
destination location.

Condition Codes:

Instruction Fields:

¥ Data ÞeldÑ3 bits of data having a range {-1,1-7} where a data value of 0 represents -1.

¥ Effective Address ÞeldÑspeciÞes the destination operand; use only data addressing modes listed in
the following table:

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— * * 0 0

Instruction
Format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 DATA 1 0 1 MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dx 000 reg. number:Dx (d8,Ax,Xi) 110 reg. number:Ax

Ax 001 reg. number:Ax (xxx).W 111 000

(Ax) 010 reg. number:Ax (xxx).L 111 001

(Ax) + 011 reg. number:Ax #<data> — —

– (Ax) 100 reg. number:Ax (d16,PC) — —

(d16,Ax) 101 reg. number:Ax (d8,PC,Xi) — —

MOV3Q V2, V3 Core V4 Core

Opcode present No Yes

Operand sizes supported — .l
40 Migrating from the ColdFire¨ MCF5307 to the MCF5407

ColdFire Instruction Set Architecture Enhancements
MVS MVS
Move with Sign Extend

Operation:(Source with sign extension) ® Destination

Assembler Syntax: MVS <ea>y,Dx

Attributes: Size = byte, word

Description: Sign-extend the source operand and move to the destination register. For the byte operation, bit
7 of the source is copied to bits 31Ð8 of the destination. For the word operation, bit 15 of the source is copied
to bits 31Ð16 of the destination.

Condition Codes:

Instruction Fields:

¥ Size ÞeldÑspeciÞes the size of the operation
0 byte operation
1 word operation

¥ Register ÞeldÑspeciÞes a data register as the destination.

¥ Effective address ÞeldÑspeciÞes the source operand; use only data addressing modes from the
following table:

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format: 0 1 1 1 REGISTER 1 0 SIZE

EFFECTIVE ADDRESS

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (d8,Ay,Xi) 110 reg. number:Ay

Ay 001 reg. number:Ay (xxx).W 111 000

(Ay) 010 reg. number:Ay (xxx).L 111 001

(Ay) + 011 reg. number:Ay #<data> 111 100

– (Ay) 100 reg. number:Ay (d16,PC) 111 010

(d16,Ay) 101 reg. number:Ay (d8,PC,Xi) 111 011

MVS V2, V3 Core V4 Core

Opcode present No Yes

Operand sizes supported — .b, .w
Migrating from the ColdFire¨ MCF5307 to the MCF5407 41

ColdFire Instruction Set Architecture Enhancements
MVZ MVZ
Move with Zero-Fill

Operation:(Source with zero fill) ® Destination

Assembler Syntax MVZ <ea>y,Dx

Attributes: Size = byte, word

DescriptionÑZero-Þll the source operand and move to the destination register. For the byte operation, the
source operand is moved to bits 7Ð0 of the destination and bits 31Ð8 are Þlled with zeros. For the word
operation, the source operand is moved to bits 15Ð0 of the destination and bits 31Ð16 are Þlled with zeros.

Condition Codes:

Instruction Fields:

¥ Size ÞeldÑspeciÞes the size of the operation
0 byte operation
1 word operation

¥ Register ÞeldÑspeciÞes a data register as the destination.

¥ Effective address ÞeldÑspeciÞes the source operand; use the following data addressing modes:

X N Z V C X Not affected
N Always cleared
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— 0 * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format: 0 1 1 1 REGISTER 1 1 SIZE

EFFECTIVE ADDRESS

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dy 000 reg. number:Dy (d8,Ay,Xi) 110 reg. number:Ay

Ay 001 reg. number:Ay (xxx).W 111 000

(Ay) 010 reg. number:Ay (xxx).L 111 001

(Ay) + 011 reg. number:Ay #<data> 111 100

– (Ay) 100 reg. number:Ay (d16,PC) 111 010

(d16,Ay) 101 reg. number:Ay (d8,PC,Xi) 111 011

MVZ V2, V3 Core V4 Core

Opcode present No Yes

Operand sizes supported — .b, .w
42 Migrating from the ColdFire¨ MCF5307 to the MCF5407

ColdFire Instruction Set Architecture Enhancements
SATS SATS
Signed Saturate

Operation:

if CCR.V == 1,
then if Dx[31] == 0,

then Dx[31:0] = 0x80000000
else Dx[31:0] = 0x7FFFFFFF

else Dx[31:0] is unchanged

Assembler Syntax: SATS Dx

Attributes: Size = long

Description: Update the destination register only if the overßow bit of the CCR is set. If the operand is
negative, then set the result to greatest positive number; otherwise, set the result to the largest negative value.
The condition codes are set according to the result.

Condition Codes:

Instruction Fields:

¥ Register ÞeldÑspeciÞes the destination data register.

X N Z V C X Not affected
N Set if the result is negative; cleared otherwise
Z Set if the result is zero; cleared otherwise
V Always cleared
C Always cleared

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format:

0 1 0 0 1 1 0 0 1 0 0 0 0 REGISTER

SATS V2, V3 Core V4 Core

Opcode present No Yes

Operand sizes supported — .l
Migrating from the ColdFire¨ MCF5307 to the MCF5407 43

ColdFire Instruction Set Architecture Enhancements
TAS TAS
Test and Set an Operand

Operation:Destination Tested ® CCR; 1 ® bit 7 of Destination

Assembler Syntax: TAS <ea>x

Attributes: Size = byte

Description: Tests and sets the byte operand addressed by the effective address Þeld. The instruction tests
the current value of the operand and sets the N and Z condition code bits appropriately. TAS also sets the
high order bit of the operand. The operand uses a read-modify-write memory cycle that completes the
operation without interruption. This instruction supports use of a ßag or semaphore to coordinate several
processors.

Condition Codes:

Instruction Fields:

¥ Effective address ÞeldÑspeciÞes the destination location; the possible data alterable addressing
modes are listed in the table below.

X N Z V C X Not affected
N Set if the msb of the operand is currently set; cleared otherwise
Z Set if the operand was zero; cleared otherwise
V Always cleared
C Always cleared

— * * 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Instruction
Format: 0 1 0 0 1 0 1 0 1 1

EFFECTIVE ADDRESS

MODE REGISTER

Addressing Mode Mode Register Addressing Mode Mode Register

Dx — — (d8,Ax,Xi) 110 reg. number:Ax
Ax — — (xxx).W 111 000

(Ax) 010 reg. number:Ax (xxx).L 111 001
(Ax) + 011 reg. number:Ax #<data> — —
– (Ax) 100 reg. number:Ax (d16,PC) — —

(d16,Ax) 101 reg. number:Ax (d8,PC,Xi) — —

TAS V2, V3 Core V4 Core

Opcode present No Yes

Operand sizes supported — .b
44 Migrating from the ColdFire¨ MCF5307 to the MCF5407

ColdFire Instruction Set Architecture Enhancements
Migrating from the ColdFire¨ MCF5307 to the MCF5407 45

ColdFire Instruction Set Architecture Enhancements
46 Migrating from the ColdFire¨ MCF5307 to the MCF5407

ColdFire Instruction Set Architecture Enhancements
Migrating from the ColdFire¨ MCF5307 to the MCF5407 47

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters
which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application
in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola
products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or
1–800–441–2447

JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
852–26668334

Technical Information Center: 1–800–521–6274

HOME PAGE: http://www.motorola.com/semiconductors

Document Comments: FAX (512) 895-2638, Attn: RISC Applications Engineering
World Wide Web Addresses: http://www.motorola.com/PowerPC

http://www.motorola.com/NetComm
http://www.motorola.com/ColdFire

AN1856/D

ColdFire, DigitalDNA, and Mfax are trademarks of Motorola, Inc.

	Migrating from the ColdFire® MCF5307 to the MCF5407
	1.1 Overview
	Table�1. Differences between MCF5307 and MCF5407�

	1.2 Instruction Set Additions
	1.3 Enhanced Memories
	Table�2. MOVEC CPU Space Register Map

	1.4 On-Chip DMA Modifications
	Table�3. TM[2:1] Encoding for MCF5307 Internal DMA as Master (TT = 01)
	Table�4. TM0 Encoding for MCF5307 Internal DMA as Master (TT = 01)
	Figure�1. MCF5307 to MCF5407 TM[2:0] Pin Remapping
	Figure�2. MCF5407 IRQPAR
	Table�5. TM2 Encoding for MCF5407 Internal DMA as Master (TT = 01)
	Table�6. TM[1:0] Encoding for MCF5407 Internal DMA as Master (TT = 01)
	Table�7. MCF5407 Signal Configurations for PP[4:2]/TM[2:0]/DACK[1:0]

	1.5 UART Enhancements
	Figure�3. Simplified Block Diagram

	1.6 Timing Differences
	1.6.1 Phase-Locked Loop (PLL)
	Figure�4. PLL Module
	Table�8. Divide Ratio Encodings
	Figure�5. CLKIN-to-PCLK Frequency Ranges

	1.6.2 Timing Relationships
	Figure�6. PLL Control Register (PLLCR)

	1.7 Reset Initialization Modifications
	Table�9. D[7:0] Multiplexing
	Table�10. D7/AA, Automatic Acknowledge of Boot CS0
	Table�11. D[6:5]/PS[1:0], Port Size of Boot CS0
	Table�12. D4/ADDR_CONFIG0, Address Pin Assignment
	Table�13. D3/BE_CONFIG0, BE[3:0] Boot Configuration

	1.8 Revision C Debug
	1.8.1 Debug Interrupts and Interrupt Requests in Emulator Mode
	Figure�7. Exception Stack Frame Form

	1.8.2 On-Chip Breakpoint Registers
	1.8.2.1 Write Debug Module Register (wdmreg)
	Figure�8. Write Debug Module Register Command (wdmreg)
	Table�14. Definition of DRc Encoding—Write�
	Figure�9. wdmreg Command Sequence

	1.8.3 Debug Programming Model
	1.8.3.1 Address Breakpoint 1 Registers (ABLR1, ABHR1)
	1.8.3.2 Address Attribute Breakpoint Register 1 (AATR1)
	Figure�10. Address Attribute Trigger Registers (AATR, AATR1)

	1.8.3.3 Program Counter Breakpoint Registers 1–3 (PBR1–PBR3)
	Figure�11. Program Counter Breakpoint Registers (PBR, PBR1, PBR2, PBR3)

	1.8.3.4 Data Breakpoint Register 1 (DBR1, DBMR1)
	1.8.3.5 Extended Trigger Definition Register (XTDR)
	Figure�12. Extended Trigger Definition Register (XTDR)
	Table�15. XTDR Field Descriptions�

	1.8.4 Debug Interrupt Exception Vectors
	Table�16. Debug C Exception Vector Assignments

	1.8.5 Processor Status and Debug Data Output Signals
	Table�17. PSTDDATA Behavior: Sequential Execution of Single-Cycle Instructions��
	Table�18. PSTDDATA Behavior: Data Operand Captured�
	Table�19. Version 4 Debug C Processor Status Encodings�

	1.8.6 Debug C Summary

	1.9 Voltage Input Changes
	1.10 PLL Power Supply Filter Circuit
	Figure�13. PLL Power Supply Filter Circuit

	1.11 Pin-Assignment Compatibility
	1.12 Mechanical Data
	1.12.1 Package
	1.12.2 Pinout
	Table�20. Pins 1–52 (Left, Top-to-Bottom)�
	Table�21. Pins 53–104 (Bottom, Left-to-Right)�
	Table�22. Pins 105–156 (Right, Bottom-to-Top)�
	Table�23. Pins 157–208 (Top, Right-to-Left) �

	1.12.3 Mechanical Diagram
	Figure�14. Mechanical Diagram

	1.13 ColdFire Instruction Set Architecture Enhancements

